Answer:
Producing disease-resistant crops
Explanation:
B. is the Right Answer Hope this helps!
I am pretty sure that the statement which is true is A. a molecule having a covalent bond can be ionic. I choose this option because you usually ca see how electons of polyatomic ions are being covalenr and gain or loose ionic electrons in order to accomplish the octet.<span>
</span>Do hope you find it helpful! Regards.
Protons:
- Have a mass
- Positively charged
- Found inside the nucleus of an atom
Electrons:
- Have a mass. (9.10938188×10−31 kilograms), though this can sometimes be considered negligible due to how small that actually is. Barely factored into atomic mass
- Negatively charged
- Found outside the nucleus in the electron shell
Neutrons:
- Have a mass
- Neutral (no charge)
- Found inside the nucleus of an atom
Atom A:
- 1 proton
- 0 Neutrons
- 1 electron
- Atomic mass of 1
- Atomic number of 1
Atom B:
- 8 Protons
- 10 Neutrons
- 8 electrons
- Atomic mass of 18
- Atomic number of 8
Atomic mass includes the number of protons and neutrons in the nucleus. Atomic number is the number of protons, as this is what defines what type of element the atom is.
Answer:
Surface runoff and condensation
Explanation:
Let's define each of the given processes in order to understand them better:
- evaporation is a process in which liquid phase transforms into a gas phase;
- precipitation is a process in which we produce a solid phase, usually this is the case when we precipitate a salt out of a solution, analogy of precipitation for water would be transformation from a liquid to a solid phase, such as freezing;
- surface runoff is a process in which water flows over the surface of a land without any change in its phase;
- condensation is a process in which a gas transforms into a liquid.
All in all, notice that surface runoff keeps water in its liquid state, while all the other three options consider phase change. The only phase change of interest is condensation: we produce liquid water from water vapor and then we can analyze its movement in the liquid state.
None since CO3 does not exist.