Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g
Answer:
Net ionic equation:
Zn²⁺(aq) + 2OH⁻(aq) → Zn(OH)₂(s)
Explanation:
Chemical equation:
ZnCl₂ + KOH → KCl + Zn(OH)₂
Balanced chemical equation:
ZnCl₂ + 2KOH → 2KCl +Zn(OH)₂
Ionic equation;
Zn²⁺(aq) + 2Cl⁻(aq) + 2K⁺(aq) + 2OH⁻(aq) → 2K⁺(aq) + 2Cl⁻(aq) +Zn(OH)₂(s)
Net ionic equation:
Zn²⁺(aq) + 2OH⁻(aq) → Zn(OH)₂(s)
The K⁺ and Cl⁻ are spectator ions that's why these are not written in net ionic equation. The Zn(OH)₂ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
The answer is <span>ReGallium or Indium</span>
Answer:
P₂ = 299.11 KPa
Explanation:
Given data:
Initial volume = 600 mL
Initial pressure = 70.00 KPa
Initial temperature = 20 °C (20 +273 = 293 K)
Final temperature = 40°C (40+273 = 313 K)
Final volume = 150.0 mL
Final pressure = ?
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 70 KPa × 600 mL × 313 K / 293K ×150 mL
P₂ = 13146000 KPa .mL. K /43950 K.mL
P₂ = 299.11 KPa
Answer:

Browser
Browser: A software application used to locate and display Web pages. The two most popular browsers are Microsoft Internet Explorer and Netscape Navigator