Explanation:
Given that,
Weight of water = 25 kg
Temperature = 23°C
Weight of mass = 32 kg
Distance = 5 m
(a). We need to calculate the amount of work done on the water
Using formula of work done



The amount of work done on the water is 1568 J.
(b). We need to calculate the internal-energy change of the water
Using formula of internal energy
The change in internal energy of the water equal to the amount of the work done on the water.


The change in internal energy is 1568 J.
(c). We need to calculate the final temperature of the water
Using formula of the change internal energy





The final temperature of the water is 23.01°C.
(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.
The amount of heat is 1568 J.
Hence, This is the required solution.
Answer: False
Explanation:
Relative to the concept of radiations, a black body is an object capable of absorbing any form of electromagnetic radiation irrespective of its frequency or angle of incidence when incident on such object.
However, the same cannot be said about real bodies as real bodies are those which reflect all rays incident on them completely and uniformly in all directions.
One very important characteristic of black bodies is that they are ideal emmiters.
The concept of emmisivity is brought about by the existence of real bodies .
This is due to the fact that they are only able to emit radiation at a fraction of the black body energy levels.
Please note that by convention, the emmisivity of a real body is always less thaan 1.
As such they are not able to emit as much radiation as a black body at the same temperature.
<span>
</span>
Gravity affects weight because gravity creates weight. Objects have mass, which is defined as how much matter an object contains. Weight is defined as the pull of gravity on mass.
<span>
The relation between weight and gravitational pull is such that, when on another celestial body, the difference in gravity would alter a person's weight. The Earth's moon, for example, has a gravitational field that is 0.165 times the pull on earth. A person who weighs 170 pounds on Earth would only weigh 28.05 pounds on the moon. This is why during the moon landing videos, people on earth viewed the astronauts taking large, bounding steps. With very little weight, it was easy for them to push off the ground.</span>