Answer;
d. the specific geometry and types of amino acids in the active site
Explanation;
-Enzymes are highly selective catalysts, meaning that each enzyme only speeds up a specific reaction. The molecules that an enzyme works with are called substrates. The substrates bind to a region on the enzyme called the active site.
-For a substrate to bind to the active site of an enzyme it must fit in the active site and be chemically attracted to it. The shape of an enzyme determines how it works. Enzymes have active sites that substrate molecules (the substances involved in the chemical reaction) fit into when a reaction happens.
A molecular covalent substance (such as co2) has a low melting point because the covalent bonds that hold the molecules together are weak and do not require much energy to break:- False.
What are covalent bonds ?
An electron transfer that leads to the formation of electron pairs between atoms is known as a covalent bond. When atoms share electrons, a stable balance of the repulsive and attractive forces among them is known as covalent bonding. These electron pairs are also known as bonds or shared pairs.
It is a molecular compound, which is a mixture of at least two atoms—the smallest building blocks of matter—joined by a covalent bond. These atoms are joined by a covalent bond, which is formed when electrons are shared.
Learn more about covalent bond here:-
brainly.com/question/19382448
#SPJ4
Answer:
The answer is its equal to the volume of its container.
--------------------------------------------------------------------------------
I hope this helps! :)
Answer:
The gain in mass by the negative electrode is the same as the loss in mass by the positive electrode. So the copper deposited on the negative electrode must be the same copper ions that are lost from the positive electrode.
An ion is a charged atom or molecule. It is charged because the number of electrons do not equal the number of protons in the atom or molecule. An atom can acquire a positive charge or a negative charge depending on whether the number of electrons in an atom is greater or less then the number of protons in the atom. An example is Iron (III) , Iron (II) , lithium, and hydrogen.