I would look this one up on Google
The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object
w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
Answer:
It's held together by the nuclear force.
Explanation:
There are <em>more</em> elemental forces than just the electromagnetic one. In this case, it is the nuclear force (called also strong force) the one that holds the nucleus together because it is stronger than the electromagnetic force over such short distances as the one inside the atomic nucleus.
Formula to find gravitational potential energy:
mgh
m: mass
g: gravitational acceleration
h: height (relative to reference level)
so the P.E. at 1.0.m is (5x9.8x1)= 49J
P.E. at 1.5m is (5x9.8x1.5) =73.5J
P.E. at 2.0m is (5x9.8x2)=98J
In linear motion , when a body moves with uniform velocity , in time t , its linear displacement will be ;
S = r∅ S = vt
r∅ = vt
r.∅ / t = v
As
v = rw
where ∅ = 90° is the angle between between radius vector r and angular velocity w (omega )
In case ∅ ≠ 90° , we can write v = r w sin∅
It gives us v = w× r