Answer:
B. w=12.68rad/s
C. α=3.52rad/s^2
Explanation:
B)
We can solve this problem by taking into account that (as in the uniformly accelerated motion)
( 1 )
where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.
In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have


to calculate the angular speed w we can use
Thus, wf=12.68rad/s
C) We can use our result in B)

I hope this is useful for you
regards
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!
Answer:

Yes it is better to pull the rope rather than push it
Explanation:
Let the force is applied at an angle of 60 degree
so we will have net vertical force on the crate is given as

here we know




now friction force on the crate is given as




Yes it is better to pull the rope rather than push it
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²