3028 molucoles bro it’s lit
Answer: The new volume be if you put it in your freezer is 1.8 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

The new volume be if you put it in your freezer is 1.8 L
Answer:
4 moles, 160 g
Explanation:
The formula for the calculation of moles is shown below:

For
:-
Mass of
= 196 g
Molar mass of
= 98 g/mol
The formula for the calculation of moles is shown below:

Thus,


According to the given reaction:

1 mole of sulfuric acid reacts with 2 moles of NaOH
So,
2 moles of sulfuric acid reacts with 2*2 moles of NaOH
Moles of NaOH must react = 4 moles
Molar mass of NaOH = 40 g/mol
<u>Mass = Moles*molar mass =
= 160 g</u>
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)
Answer:
Answer:
see explanation and punch in the numbers yourself ( will be better for your test)
Explanation:
If you are given atoms you need to divide by Avogadro's number 6.022x10^23
then you will have moles of sulfur-- once you have moles multiply by the molar mass of sulfur to go from moles to grams
mm of sulfur is 32 g/mol