Answer:
4.09×10⁻³ is the mole fraction of sucrose
Explanation:
Mole fraction = Moles of solute or solvent/ Total moles
Let's convert the mass to moles (mass / molar mass)
38.6 g / 342 g/m = 0.113 moles of sucrose
495 g / 18 g/m = 27.5 moles of water
Total moles = 0.113 m + 27.5 m = 27.0613 moles
Mole fraction of sucrose = Moles of sucrose / Total moles
0.113 m / 27.0613 moles = 4.09×10⁻³
Answer:
its 0.163 g
Explanation:
From the total pressure and the vapour pressure of water we can calculate the partial pressure of O2
PO 2 =P t −P H 2 O
= 760 − 22.4
= 737.6 mmHg
From the ideal gas equation we write.
W= RT/PVM = (0.0821Latm/Kmol)(273+24)K(0.974atm)(0.128L)(32.0g/mol/) =0.163g
<span>The following is the role of NaCl and EDTA in DNA isolation, hope it helps:
NaCl provides Na+ ions that will block negative charge from phosphates on DNA.
Negatively charged phosphates on DNA cause molecules to repel each other. The Na+ ions will form an ionic bond with the negatively charged phosphates on the DNA, neutralizing the negative charges and allowing the DNA molecules to come together.</span>
Answer:
Copper
Explanation:
Within intermolecular forces, ion-dipole is the strongest, followed by hydrogen bonding, then dipole-dipole, and then London dispersion.