Answer: -
Surface Tension
Explanation: -
Surface tension is cohesive force created as a result of hydrogen bonding, that enables a liquid drop to have a minimum surface area.
Due to it being cohesive, the water top surface is concave in nature, allowing us to hence slightly overfill a glass with water.
Due to surface tension, the surface of water behaves like a stretched membrane, allowing dense objects like a length wise steel needle to float on water.
Thus, the hydrogen bonding in water creates __surface tension__, a cohesive force that enables one to slightly overfill a glass with water or allows denser objects, such as a lengthwise steel needle, to float on water
Answer:
Ionic compound are when electrons are given to another element, making one atom positive and the other negative, so they attract. Covalent compound is when both atoms share electrons with each other.
The reason that some of the elements of period three and beyond are steady in spite of not sticking to the octet rule is due to the fact of possessing the tendency of forming large size, and a tendency of making more than four bonds. For example, sulfur, it belongs to period 3 and is big enough to hold six fluorine atoms as can be seen in the molecule SF₆, while the second period of an element like nitrogen may not be big to comprise 6 fluorine atoms.
The existence of unoccupied d orbitals are accessible for bonding for period 3 elements and beyond, the size plays a prime function than the tendency to produce more bonds. Hence, the suggestion of the second friend is correct.