<span>There are 1000 cm3 in 1 liters.
Hence 1 liter of the liquid would weigh:
1000 cm3 x (1.17 g/cm3) = 1170 gm
and there are 1000 gm in 1 kg, so we want enough liters to have a mass of
3.75 kg x 1000 gm/kg = 3750 gm
Hence, # of liters = desired mass / # of gm per liter
= 3750 gm / 1170 gm/liter
= 3.2051282 liters</span>
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
They look like gases plasmas have no fixed shapes or volume and are less dense tan solids or liquids
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
Answer : The correct option is, 13.7 mole
Solution : Given,
Moles of
= 27.4 moles
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 moles of 
So, 27.4 moles of
react with
moles of 
Therefore, the number of moles of oxygen
required are, 13.7 moles