Answer: The acceleration of the object is 0.67m/s^2 west.
Explanation: Here we are given the initial velocity and final velocity as well as the time taken. Acceleration is the change in velocity per unit time, thus the equation becomes.
a=dv/t
a=vf-vi/t
a=-2.1-4.7/3.9
a= 0.66m/s^2 west
Speed is equal to distance traveled divided by the time. So it's 3.5 m/s
The answer to this question is Helium
Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I
Answer:
The power will remain the same for a particular load as we are not changing the load. so if we increase the voltage, the current will decrease to make the net power consumed by the load same as before. If we increase the current, the voltage will decrease for making the power same. The power will only change when we changes the load.
Explanation: