Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
The correct answer is: Angular velocity =

rad/s
Explanation:
The angular velocity is given as:
ω =

--- (1)
Where T = 165 * (365 days) * (24 hours/day) * (60 minutes/hour) * (60 seconds/minute) = 5203440000 s
Plug in the value in (1):
ω =

rad/s
Answer:
c
if you calculate the net force you get 490 N
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>
Answer:
Proof in explanataion
Explanation:
The basic dimensions are as follows:
MASS = M
LENGTH = L
TIME = T
i)
Given equation is:

where,
H = height (meters)
u = speed (m/s)
g = acceleration due to gravity (m/s²)
Sin Ф = constant (no unit)
So there dimensions will be:
H = [L]
u = [LT⁻¹]
g = [LT⁻²]
Sin Ф = no dimension
Therefore,
![[L] = \frac{[LT^{-1}]^2}{[LT^{-2}]}\\\\\ [L] = [L^{(2-1)}T^{(-2+2)}]](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20%5Cfrac%7B%5BLT%5E%7B-1%7D%5D%5E2%7D%7B%5BLT%5E%7B-2%7D%5D%7D%5C%5C%5C%5C%5C%20%5BL%5D%20%3D%20%5BL%5E%7B%282-1%29%7DT%5E%7B%28-2%2B2%29%7D%5D)
<u>[L] = [L]</u>
Hence, the equation is proven to be homogenous.
ii)

where,
F = Force = Newton = kg.m/s² = [MLT⁻²]
G = Gravitational Constant = N.m²/kg² = (kg.m/s²)m²/kg² = m³/kg.s²
G = [M⁻¹L³T⁻²]
m₁ = m₂ = mass = kg = [M]
r = distance = m = [L]
Therefore,
![[MLT^{-2}] = \frac{[M^{-1}L^{3}T^{-2}][M][M]}{[L]^2}\\\\\ [MLT^{-2}] = [M^{(-1+1+1)}L^{(3-2)}T^{-2}]\\\\](https://tex.z-dn.net/?f=%5BMLT%5E%7B-2%7D%5D%20%3D%20%5Cfrac%7B%5BM%5E%7B-1%7DL%5E%7B3%7DT%5E%7B-2%7D%5D%5BM%5D%5BM%5D%7D%7B%5BL%5D%5E2%7D%5C%5C%5C%5C%5C%20%5BMLT%5E%7B-2%7D%5D%20%3D%20%5BM%5E%7B%28-1%2B1%2B1%29%7DL%5E%7B%283-2%29%7DT%5E%7B-2%7D%5D%5C%5C%5C%5C)
<u>[MLT⁻²] = [MLT⁻²]</u>
Hence, the equation is proven to be homogenous.