Let's cut through the weeds and the trash
and get down to the real situation:
A stone is tossed straight up at 5.89 m/s .
Ignore air resistance.
Gravity slows down the speed of any rising object by 9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for
(5.89 m/s / 9.8 m/s²) = 0.6 seconds.
At that timer, he has run out of upward gas. He is at the top
of his rise, he stops rising, and begins to fall.
His average speed on the way up is (1/2) (5.89 + 0) = 2.945 m/s .
Moving for 0.6 seconds at an average speed of 2.945 m/s,
he topped out at
(2.945 m/s) (0.6 s) = 1.767 meters above the trampoline.
With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.
(0.6 sec up) + (0.6 sec down) = 1.2 seconds until he hits rubber again.
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J
Antoine-Laurent Lavoisier was the first person to report the four element classification system but also ended up including some compounds rather than elements.
A beta particle. Hoped I help. Sorry if it wrong.
m = mass of the person = 82 kg
g = acceleration due to gravity acting on the person = 9.8 m/s²
F = normal force by the surface on the person
f = kinetic frictional force acting on the person by the surface
μ = Coefficient of kinetic friction = 0.45
The normal force by the surface in upward direction balances the weight of the person in down direction , hence
F = mg eq-1
kinetic frictional force on the person acting is given as
f = μ F
using eq-1
f = μ mg
inserting the values
f = (0.45) (82) (9.8)
f = 361.6 N