Answer:
Can you show a picture of the diagram?
Answer:
Step-by-step explanation:
Any time you have compounding more than once a year (which is annually), unless we are talking about compounding continuously, you will use the formula
Here's what we have:
The amount after a certain time that she has in the bank is 4672.12; that's A(t).
The interest rate in decimal form is .18; that's r.
The number of times the interest compounds is 12; that's n
and the time that the money is invested is 3.5 years; that's t.
Filling all that into the formula:
Simplifying it down a bit:
Raise 1.015 to the 42nd power to get
4672.12 = P(1.868847115) and divide to get P alone:
P = 2500.00
She invested $2500.00 initially.
What you can use for this case is a function of the potential type.
We have then
y = a (b) ^ x
Where we have:
Walker starts the fund by depositing $ 5
a = 5
Each week the balance of the fund is twice the balance of the previous week:
b = 2
The function is:
y = 5 (2) ^ x
The number of weeks to reach $ 1280 is 8 weeks.
Check:
y = 5 (2) ^ 8
y = 1280
Answer:
An equation can be used to find the number of weeks, x, after which the balance of the fund will reach $ 1,280 is:
y = 5 (2) ^ x
The number of weeks that it takes to reach the class goal is
8 weeks