Answer:bippity boppity yee
Explanation:
Answer:

Explanation:
For this interesting problem, we use the definition of centripetal acceleration
a = v² / r
angular and linear velocity are related
v = w r
we substitute
a = w² r
the rectangular body rotates at an angular velocity w
We locate the points, unfortunately the diagram is not shown. In this case we have the axis of rotation in a corner, called O, in one of the adjacent corners we call it A and the opposite corner A
the distance OB = L₂
the distance AB = L₁
the sides of the rectangle
It is indicated that the acceleration in in A and B are related
we substitute the value of the acceleration
w² r_A = n r_B
the distance from the each corner is
r_B = L₂
r_A =
we substitute
\sqrt{L_1^2 + L_2^2} = n L₂
L₁² + L₂² = n² L₂²
L₁² = (n²-1) L₂²
E=F*d/2 = M*g*d/2 = 25kg * 9.8 N/kg *0.65m / 2 = 79.625J
Answer:
As Per Given Information
20x objective lens was used by specimen
10x ocular lens was also used by him.
we have to find the total magnification.
For calculating the total magnification we 'll simply do multiplication
Total Magnification = 20x × 10x
Total Magnification = 200x
So , the total magnification will be 200x .
Answer:

Explanation:
Given that,
The mass of a Hubble Space Telescope, 
It orbits the Earth at an altitude of 
We need to find the potential energy the telescope at this location. The formula for potential energy is given by :

Where
is the mass of Earth
Put all the values,

So, the potential energy of the telescope is
.