the reaction is
2NO(g) + 2H2(g) <—> N2(g) + 2H2O (g)
Kc = [N2] [ H2O]^2 / [NO]^2 [ H2]^2
Given
moles of NO = 0.124 therefore [NO] = moles /volume = 0.124 /2 = 0.062
moles of H2 = 0.0240 , therefore [H2] = moles / volume = 0.0240 / 2 = 0.012
moles of N2 = 0.0380 , therefore [N2] = moles / volume = 0.0380 / 2 = 0.019
moles of H2O = 0.0276 , therefore [H2O] = moles / volume = 0.0276 / 2 = 0.0138
Kc = (0.019) ( 0.0138)^2 / (0.062)^2 ( 0.012)^2 = 6.54
If he was the primary scientist doing it as he did alot of the heavy lifting then yes its ok, but i also think how the others should also me at least mentioned. Or they could just not name the experiment by a person just so its not too biased
Answer:
Temporary hardness is a type of water hardness caused by the presence of dissolved bicarbonate minerals (calcium bicarbonate and magnesium bicarbonate). ... However, unlike the permanent hardness caused by sulfate and chloride compounds, this "temporary" hardness can be reduced by boiling the water.
<span>2.10 grams.
The balanced equation for the reaction is
CO + 2H2 ==> CH3OH
The key thing to take from this equation is that it takes 2 hydrogen molecules per carbon monoxide molecule for this reaction. And since we've been given an equal number of molecules for each reactant, the limiting reactant will be hydrogen.
We can effectively claim that we have 5.86/2 = 2.93 l of hydrogen and an excess of CO to consume all of the hydrogen. So the number of moles of hydrogen gas we have is:
2.93 l / 22.4 l/mol = 0.130803571 mol
And since it takes 2 moles of hydrogen gas to make 1 mole of methanol, divide by 2, getting.
0.130803571 mol / 2 = 0.065401786 mol
Now we just need to multiply the number of moles of methanol by its molar mass. First lookup the atomic weights involved.
Atomic weight carbon = 12.0107 g/mol
Atomic weight hydrogen = 1.00794 g/mol
Atomic weight oxygen = 15.999 g/mol
Molar mass CH3OH = 12.0107 + 4 * 1.00794 + 15.999 = 32.04146 g/mol
So the mass produced is
32.04146 g/mol * 0.065401786 mol = 2.095568701 g
And of course, properly round the answer to 3 significant digits, giving 2.10 grams.</span>