Answer:
C, when the ball lands it will have the least amount potential energy.
Explanation:
here is a picture that should help you.
Answer:
This question is incomplete but the correct option is B
Explanation:
This question is incomplete because of the absence of the "Reference Table S", however the question can still be answered in the absence of the table. The energy described in the question is the ionization energy (energy required to remove the most loosely bound electron in an atom). This question seeks to know the atom (from the options provided) with the least ionization energy.
Ionization energy increases from left to right across the period because it's easier to remove a single electron (valence electron) from the outermost shell than to remove two electrons from the same shell; thus the more the valence electrons (in a shell), the higher the ionization energy. Thus, bromine (Br) and tin (Sn) have high ionization energies because they have more number of electrons in there outermost shell.
<u>Berylium (Be) and strontium (Sr) are both in the group 2 of the periodic table because they both have 2 electrons in there outermost shell. Ionization energy decreases down a group. This is because the farther an electron is from the nucleus, the weaker the force of attraction between the nucleus and the electron. Thus, strontium (Sr) would have a lesser ionization energy between the two and would indeed have the least ionization among the options provided</u>. Hence, the correct option is B
What is the average velocity of atoms in 1.00 mol of argon (a monatomic gas) at 275 k for m, use 0.0399kg
Answer: The average velocity of the atoms 847.33 m/s.
Explanation:
Moles of the neon = 1.00
Temperature of the gas : 288 K
Mass of the gas = 0.01000
R = 8.31 J/mol K
The average velocity of the atoms 847.33 m/s.
Explanation:
option no 4 is correct answer
I hope is helpful