Answer:
Approximately
, assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let
and
denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question,
and
.
Let
denote the distance between these two point charges. In this question,
.
Let
denote the Coulomb constant. In standard units,
.
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.
Answer:
divide
Explanation:
whenever looking for velocity.just devide
Answer:
option 4
Explanation:
Light's velocity in air ( 3 × 10^8 m/s ) is much greater than sound's velocity in air ( 343 m/s )
Hence due to difference in velocities , during lightning light is seen first & sound is heard later
The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.
Answer:
B. Longer than t s,
Explanation:
Gravitational accln on earth is 9.8 m/s^2,
and one you provided as on moon is 1.6 m/s^2
that mean on moon gr. accl. is lesser!
now the time taken on earth will be lesser cuz from the same height if you drop the object from rest!
since accln on earth is higher,the object will attain higher velocity as compare to that of on moon!
✌️:)