Wood is a poor conductor and therefore a good insulator keeping heat inside
Answer:
T = 1010 degree Celsius
Explanation:
mass of ball (Mb) = 100 g
mass of water (Mw) = 400 g
temp of water = 0 degree
specific heat of platinum (C) = 0.04 cal/g degree celsius
we can calculate the temperature of the furnace from the equation before
Mb x C x (temp of furnace (T) - equilibrium temp) = Mw x (equilibrium temp - temp of furnace)
100 x 0.04 x ( T - 10) = 400 x (10 - 0)
4 (T - 10) = 4000
T - 10 = 1000
T = 1010 degree Celsius
Water holds in heat very well. Keep the temperature more steady and average. The areas around the water will also have a less variant change in temperature as a result. This property of water is known as high specific heat.
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .