Forces in the universe that act over long distance, meaning the distance is greater than the diameter of the nucleus of the atom are:
1. Electrostatic force or Coulomb force: Fc=(k*Q₁*Q₂)/r²,
2. Gravitational force: Fg=(G*m₁*m₂)/r²,
3. Magnetic force: Fm=qvB,
4. London dispersion force, also known as one of the van der Waals forces.
B) <span> It is practical because a top-loading machine uses much more water than a front-loading machine.
Front-loading washing machines are able to better conserve water by automatically maintaining the same water level throughout the wash, while top-loading washing machines generally begin the cycle by filling up the barrel to a certain point. </span>
<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
Answer: How to solve for FX and FY?
to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.
Explanation:
Answer:
fdghgjkk , mmn xgwvdkqgeb e keqwkclhehjq qbqlq.bq;q
Explanation: