Answer:
117.72kW
Explanation:
Given data
Mass m= 50kg
height x = 2m
time taken = 2 minutes= 129 seconds
let us find the work done
WD= force * distance
WD= mgx
WD= 50*9.81*2
WD= 981 Joules
Let us find the power
Power= work * time
Power= 981*120
Power= 117720
Power= 117.72 kW
Hence the power spent is 117.72kW
-- The resistance of the heater is (volts/current) = 5 ohms
-- The heating (RMS) value of a sinusoidal AC is V(peak)/√2 . For this particular alternator, V(peak)=100V, so the heating (RMS) equivalent is 70.71 V.
-- The heating power delivered to the electric heater is (E²/R).
Power = (100/√2)² / 5
Power = 5,000 / 5
<u>Power = 1,000 watts </u>
(a) The momentum of the proton is determined as 5.17 x 10⁻¹⁸ kgm/s.
(b) The speed of the proton is determined as 3.1 x 10⁹ m/s.
<h3>
Momentum of the proton</h3>
The momentum of the proton is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
- v is speed of the proton = ?
<h3>Speed of the proton</h3>
v² = 2K.E/m
v² = (2 x 50 x 10⁹ x 1.602 x 10⁻¹⁹ J)/(1.67 x 10⁻²⁷)
v² = 9.6 x 10¹⁸
v = 3.1 x 10⁹ m/s
<h3>Momentum of the proton</h3>
P = mv = (1.67 x10⁻²⁷ x 3.1 x 10⁹) = 5.17 x 10⁻¹⁸ kgm/s
Learn more about momentum here: brainly.com/question/7538238
#SPJ4
The answer for this would be A. since power is Joules/seconds and energy is rated in Joules