Probably to the right because the force on the left is greater and will therefore overpower the 2N force and push to the right
Answer:
200 km/hr
Explanation:
Since he goes 80km per hour, multiply this by 2.5 or two and a half hours.
80 x 2.5 = 200 km/hr.
The car's average acceleration would be 1.25m/s^2 or 1.25meters/second/second. That looks to be the fourth one you've listed.
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
The answer to this question would be:3850ft
To answer this question, you need to convert the speed velocity from miles/hour into feet/second. The equation would be: 750 miles/hour x 5280 foot/mile x 1 hour/3600second = 1100 ft/s
Then multiply the time with the velocity= 3.5 second x 1100 ft/s= 3850ft