The wavelength of the third resonance of the closed organ pipe is equal to the ratio between the speed of sound and the frequency of the 3rd harmonic:

The relationship between length of a closed pipe and wavelength of the standing waves inside is:

where n is the number of the harmonic. In this case, n=3, so the length of the pipe is

Answer:
6 significant figure
Explanation:
The digits 111328 all are 6 figures with no figure being zero, neither zero after the other digits. In this case, all the numbers are significant and since they are only six numbers, then this is a six significant figure. In case we add another zero after digit 8, the zero is not significant but if added either infront of 8 or 2, the zero becomes significant.
Answer:
16.8ohms
Explanation:
According to ohm's law which states that the current passing through a metallic conductor at constant temperature is directly proportional to the potential difference across its ends.
Mathematically, V = IRt where;
V is the voltage across the circuit
I is the current
R is the effective resistance
For a series connected circuit, same current but different voltage flows through the resistors.
If the initial current in a circuit is 19.3A,
V = 19.3R... (1)
When additional resistance of 7.4-Ω is added and current drops to 13.4A, our voltage in the circuit becomes;
V = 13.4(7.4+R)... (2)
Note that the initial resistance is added to the additional resistance because they are connected in series.
Equating the two value of the voltages i.e equation 1 and 2 to get the resistance in the original circuit we will have;
19.3R = 13.4(7.4+R)
19.3R = 99.16+13.4R
19.3R-13.4R = 99.16
5.9R = 99.16
R= 99.16/5.9
R = 16.8ohms
The resistance in the original circuit will be 16.8ohms
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)
Given:
The thermal energy added to the system is Q = 90 J
The work done by the system on the surroundings is W = 30 J
To find the change in internal energy.
Explanation:
According to the first law of thermodynamics, the change in internal energy can be calculated by the formula

On substituting the values, the change in internal energy will be

Final Answer: The chage in internal energy is 60 J (option D)