Answer:
Will be doubled.
Explanation:
For a capacitor of parallel plates of area A, separated by a distance d, such that the charges in the plates are Q and -Q, the capacitance is written as:

where e₀ is a constant, the electric permittivity.
Now we can isolate V, the potential difference between the plates as:

Now, notice that the separation between the plates is in the numerator.
Thus, if we double the distance we will get a new potential difference V', such that:

So, if we double the distance between the plates, the potential difference will also be doubled.
Assuming no other forces are acting on the wheelbarrow, it must be stationary.
Answer: unknown so the second one
I hope this helps you with your stuff
Question:<em> </em><em>Find, separately, them mass of the balloon and the basket (incidentally, most of the balloon's mass is air)</em>
Answer:
The mass of the balloon is 2295 kg, and the mass of the basket is 301 kg.
Explanation:
Let us call the mass of the balloon
and the mass of the basket
, then according to newton's second law:
,
where
is the upward acceleration, and
is the net propelling force (counts the gravitational force).
Also, the tension
in the rope is 79.8 N more than the basket's weight; therefore,

and this tension must equal


Combining equations (2) and (3) we get:

since
, we have

Putting this into equation (1) and substituting the numerical values of
and
, we get:


Thus, the mass of the balloon and the basket is 2295 kg and 301 kg respectively.
Answer:
true
Explanation:
a wheelbarrow has its load situated between the fulcrum and the force the wheel Barrow is 2nd class because of its resistance between the force and the axis