ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state 
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ 
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ 
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
Answer:
Second reaction
NO2 + F -------> NO2F
Rate of reaction:
k1 [NO2] [F2]
Explanation:
NO2 + F2 -----> NO2F + F slow step1
NO2 + F -------> NO2F fast. Step 2
Since the first step is the slowest step, it is the rate determining step of the reaction
Hence:
rate = k1 [NO2] [F2]
When oxygen has an electronegativity of 3.5, and carbon has an electronegativity of 2.5, then the oxygen atom would have a slightly negative charge. The oxygen atom in the carbon monoxide molecule would pull more electrons to its side since it has higher electronegativity making it slightly negative and the carbon would have a slightly positive charge as it would contain less electrons. This results to the formation of a polar molecule. A polar molecule is made when the molecule contains a slightly positive end and a slightly negative end. It would have a net dipole which is a result of the partial opposing charges in the molecule.
<span>Activity series of metals. it is a series of metals based on their reactivity from highest to lowest. Potassium occupies the top most level of reactivity. The reactivity means the ability to displace hydrogen gas from water and acid solutions.</span>