Answer:
Rate = k [NO]2 [H2]
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
I have the solution as an attachment.
Answer:
39.3%
Explanation:
CaF2 + H2SO4 --> CaSO4 + 2HF
We must first determine the limiting reactant, the limiting reactant is the reactant that yields the least number of moles of products. The question explicitly says that H2SO4 is in excess so CaF2 is the limiting reactant hence:
For CaF2;
Number of moles reacted= mass/molar mass
Molar mass of CaF2= 78.07 g/mol
Number of moles reacted= 11g/78.07 g/mol = 0.14 moles of Calcium flouride
Since 1 mole of calcium fluoride yields two moles of 2 moles hydrogen fluoride
0.14 moles of calcium fluoride will yield 0.14×2= 0.28 moles of hydrogen fluoride
Mass of hydrogen fluoride formed (theoretical yield) = number of moles× molar mass
Molar mass of hydrogen fluoride= 20.01 g/mol
Mass of HF= 0.28 moles × 20.01 g/mol= 5.6 g ( theoretical yield of HF)
Actual yield of HF was given in the question as 2.2g
% yield of HF= actual yield/ theoretical yield ×100
%yield of HF= 2.2/5.6 ×100
% yield of HF= 39.3%
The graphics in the attachment is part of the question, which was incomplete.
Answer: Fr = 102N and angle of approximately 11°.
Explanation: From the attachment, it is observed that from the three forces acting on M, two are perpendicular. So to find them, we have to show their x- and y- axis components. From the graph:
Fx = 70+40-10 = 100
Fy = 40-20 = 20
Now, as the forces form a triangle, the totalforce is:
Fr = 
Fr = 
Fr = ≈ 102N
To determine the angle requested, we use:
arctg H = 
arctg H = 
H = tg 0.2 ≈ 11°.
evaporation systems allow for an endless source of water. you can grab cups of water straight from the sea or even a lake. the use of evaporation allows for you to drink water thats even healthier than getting it from a cloud and it will leave all of the bad parts that used to be in the water in the first container you pour into. this system is most useful in hot climates such as places near the equator.
The molecule that could diffuse across the plasma membrane is methane (CH4).
<h3>What is diffusion?</h3>
Diffusion is the movement of fluids or substances from regions of high concentration toward regions of lower concentration.
The plasma membrane is the semipermeable membrane that surrounds the cytoplasm of a cell. The semipermeability means that it allows some molecules through but blocks other substances.
The semipermeable plasma membrane readily allows the passage of small hydrophobic and polar molecules.
Therefore, the molecule that could diffuse across the plasma membrane is methane (CH4).
Learn more about semipermeability at: brainly.com/question/1652796
#SPJ1