Answer:
Explanation:
a ) The volume of blood flowing per second throughout the vessel is constant .
a₁ v₁ = a₂ v₂
a₁ and a₂ are cross sectional area at two places of vessel and v₁ and v₂ are velocity of blood at these places .
2A x v₁ = A x .40
v₁ = .20 m /s
b )
Let normal pressure be P₁ when cross sectional area is 2A and at cross sectional area A , pressure is P₂
Applying Bernoulli's theorem
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
P₁ - P₂ = 1/2 ρ(v₂² - v₁² )
= .5 x 1060 ( .4² - .2² )
= 63.6 Pa .
To resolve these forces we have to make use of the sines and cosines.
To resolve this force in 30 degree north of west, the answer will be
100*sin(30)
The answer will be 50N
Now to resolve the force acting 60 degree north of east
100* cos(60)
The answer will be 50N.
This also adds to the total force acting that is 50+50=100N. This is the way forces are resolved according to their specified angles.
The pressure of the atmosphere, when a barometer reads 780 mm Hg. Mercury which a density of 1.36 x 10^4 kg /m^3 is B 1.1 x 10^5 N/m^2
This problem can be solved using the formula below
P = dgh................. Equation 1
Where P = Pressure of the atmosphere, d = density of the mercury, h = height of the mercury, g = acceleration due to gravity.
From the question,
Given: d = 1.36×10⁴ kg/m³, h = 780 mm = 0.78 m,
Constant: g = 10 m/s²
Substitute these values into equation 1
P = (1.36×10⁴)(10)(0.78)
P = 10.608×10⁴ N/m²
P ≈ 1.1×10⁵ N/m²
Hence the right answer is B. 1.1×10⁵ N/m²
Learn more about Pressure here: brainly.com/question/23603188
Gravitational potential energy = mass (kg) x gravitational field strength (N/kg) x height (m)
Therefore,
3 x 0.45 x 10 = 13.5J <- it's joules because it's energy
Answer:
I think the sun is the right answer