At the given erro in angle, the error in the measurement of sin 90 degrees would be 0.001.
<h3>
Percentage error</h3>
The percentage error of any measurement is obtained from the ratio of the error to the actual measurement.
The error of sin 90 degrees is calculated as follows;
sin 90 = 1
error in measurement = sin(90 - 0.5)
error in measurement = sin(89.5) = 0.999
<h3>Error in sin 90 degrees</h3>
Error in sin 90 degrees = 1 - 0.999
Error in sin 90 degrees = 0.001
Thus, at the given erro in angle, the error in sin 90 degrees would be 0.001.
Learn more about error in measurement here: brainly.com/question/26668346
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
Answer:
The railroad tracks are 13 m above the windshield (12 m without intermediate rounding).
Explanation:
First, let´s calculate the time it took the driver to travel the 27 m to the point of impact.
The equation for the position of the car is:
x = v · t
Where
x = position at time t
v = velocity
t = time
x = v · t
27 m = 17 m/s · t
27 m / 17 m/s = t
t = 1.6 s
Now let´s calculate the distance traveled by the bolt in that time. Let´s place the origin of the frame of reference at the height of the windshield:
The position of the bolt will be:
y = y0 + 1/2 · g · t²
Where
y = height of the bolt at time t
y0 = initial height of the bolt
g = acceleration due to gravity
t = time
Since the origin of the frame of reference is located at the windshield, at time 1.6 s the height of the bolt will be 0 m (impact on the windshield). Then, we can calculate the initial height of the bolt which is the height of the railroad tracks above the windshield:
y = y0 + 1/2 · g · t²
0 = y0 -1/2 · 9.8 m/s² · (1.6 s)²
y0 = 13 m