The particle with sharp ends have the slowest rate of deposition
Answer: Option C
<u>Explanation:</u>
As per aerosol physics, deposition is a process where aerosol particles accumulate or settle on solid surfaces. Thereby, it reduces the concentration of particles in the air. Deposition velocity (rate of deposition) defines from F = vc, where v is deposition rate, F denotes flux density and c refers concentration.
Deposition velocity is slowest for particles of intermediate-sized particles because the frictional force offers resistance to the flow. Density is directly proportional to the deposition rate so clearly shows that high-density particles settle faster. Due to friction, round and large-sized particles deposit faster than oval/flattened sediments.
I would say B but I have no clue
The displacement of Edward in the westerly direction is determined as 338.32 km.
<h3>What is displacement of Edward?</h3>
The displacement of Edward can be determined from different methods of vector addition. The method applied here is triangular method.
The angle between the 200 km north west and 150 km west = 60 + 90 = 150⁰
The displacement is the side of the triangle facing 150⁰ = R
R² = a² + b² - 2abcosR
R² = 150² + 200² - (2x 150 x 200)xcos(150)
R² = 62,500 - (-51,961.52)
R² = 114,461.52
R = 338.32 km
Learn more about displacement here: brainly.com/question/321442
#SPJ1
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.