1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
9

Where the velocity is highest in the radial direction? Why?

Engineering
1 answer:
posledela3 years ago
8 0

Answer:

In the center and directed away from it.

Explanation:

The direction along the radius and directed away from the center is known as radial direction.

The velocity is highest in the radial direction pointing away from the center, this is because of the reason that  when the particle executes its motion in the direction that is radial, then it is not acted upon by any force that opposes the motion of the particle and thus there is no obstruction to the velocity of the particle and it is therefore, the highest in the radial direction.

You might be interested in
If you are a mechanical engineer answer these questions:
Natasha_Volkova [10]

Answer:

1. Yes, they are all necessary.

2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.

3 0
3 years ago
The following data were obtained when a cold-worked metal was annealed. (a) Estimate the recovery, recrystallization, and grain
Oduvanchick [21]
Sorrry needdddd pointssssss
7 0
2 years ago
What happens to the odometer reading when a car drives beyond its maximum reading?
Olin [163]
The odometer keeps running after you move beyond its upper limit, but the largest place values cannot be displayed due to overflow error.
8 0
2 years ago
A 650-kN column load is supported on a 1.5 m square, 0.5 m deep spread footing. The soil below is a well-graded, normally consol
insens350 [35]

<u>Explanation:</u>

Determine the weight of footing

W_{f}=\gamma(L)(B)(D)

Where W_{f} is the weight of footing, γ is the unit weight of concrete,  L is the length of footing is the width of footing, and D is the depth of footing

Substitute 2 m \text { for } L, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 23.6 kN / m ^{3} for γ in the equation

\begin{aligned}W_{f} &=\left(23.6 kN / m ^{3}\right)(2 m )(1.5 m )(0.5 m ) \\&=35.4 kN\end{aligned}

Therefore, the weight of the footing is 35.4 kN

Determine the initial vertical effective stress.

\sigma_{z p}^{\prime}=\gamma(D+B)-u

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute 18 kN / m ^{3} \text { for } \gamma, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 0 for u in the equation

\begin{aligned}\sigma_{z p}^{\prime} &=\left(18 kN / m ^{3}\right)(1.5+0.5) m -0 \\&=36 kPa\end{aligned}

Therefore, the initial vertical stress is 36 kPa

Determine the vertical effective stress.

\sigma_{z D}^{\prime}=\gamma D

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute \(18 kN / m ^{3}\) for \(\gamma, 0.5 m\) for \(D\) and 0 for \(u\) in the equation.

\begin{aligned}\sigma_{z b}^{\prime} &=\left(18 kN / m ^{3}\right)(0.5 m )-0 \\&=9 kPa\end{aligned}

Therefore, the vertical stress at a depth below the ground surface is

9 kPa

Determine the influence factor at the midpoint of soil layer,

I_{e p}=0.5+0.1 \sqrt{\frac{q-\sigma_{s 0}^{\prime}}{\sigma_{z p}^{\prime}}}

Here I_{e p} is the influence factor at the midpoint of soil layer  \sigma_{z^{p}}^{\prime} is initial vertical stress, \sigma_{z^{p}}^{\prime} is vertical effective stress, and Q is bearing pressure

Substitute 36 kPa for \(\sigma_{z p}^{\prime}, 228.47\) kPa for \(q,\) and 9 kPa for \(\sigma_{z D}^{\prime}\) in the equation\begin{aligned}I_{\epsilon P} &=0.5+0.1 \sqrt{\frac{228.47 kPa -9 kPa }{36 kPa }} \\&=0.75\end{aligned}

Therefore the influence factor at the midpoint of the soil layer is 0.693

6 0
3 years ago
Jylan enjoys being in and around water. Based on his interests, which of the following careers might be enjoyable for him? dairy
Tasya [4]

Answer: the answer is a marine biologist

Explanation: the answer is marine biologist because Jylan likes to be in and out the water which means he would be perfect as marine biologist.

6 0
2 years ago
Other questions:
  • The boiler pressure is 38bar and the condenser pressure 0.032 bar.The saturated steam is superheated to 420 oC before entering t
    8·1 answer
  • HELP!
    8·1 answer
  • Yield and tensile strengths and modulus of elasticity . with increasing temperature. (increase/decrease/independent)
    11·1 answer
  • The liquid-phase reaction:
    12·1 answer
  • In software engineering how do you apply design for change?
    13·1 answer
  • To remove a spark plug the technician would need a(n) ___socket​
    7·2 answers
  • Three-dimensional measuring references all of these EXCEPT:
    15·1 answer
  • How does energy transition from one form to another as water moves from behind a dam to downstream of a dam?.
    8·1 answer
  • Which option identifies why Ethan’s skills are valuable to his team in the following scenario?
    8·1 answer
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!