1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
9

Where the velocity is highest in the radial direction? Why?

Engineering
1 answer:
posledela3 years ago
8 0

Answer:

In the center and directed away from it.

Explanation:

The direction along the radius and directed away from the center is known as radial direction.

The velocity is highest in the radial direction pointing away from the center, this is because of the reason that  when the particle executes its motion in the direction that is radial, then it is not acted upon by any force that opposes the motion of the particle and thus there is no obstruction to the velocity of the particle and it is therefore, the highest in the radial direction.

You might be interested in
A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
gayaneshka [121]

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

7 0
3 years ago
Air enters a compressor steadily at the ambient conditions of 100 kPa and 22°C and leaves at 800 kPa. Heat is lost from the comp
telo118 [61]

Answer:

a) 358.8K

b) 181.1 kJ/kg.K

c) 0.0068 kJ/kg.K

Explanation:

Given:

P1 = 100kPa

P2= 800kPa

T1 = 22°C = 22+273 = 295K

q_out = 120 kJ/kg

∆S_air = 0.40 kJ/kg.k

T2 =??

a) Using the formula for change in entropy of air, we have:

∆S_air = c_p In \frac{T_2}{T_1} - Rln \frac{P_2}{P_1}

Let's take gas constant, Cp= 1.005 kJ/kg.K and R = 0.287 kJ/kg.K

Solving, we have:

[/tex] -0.40= (1.005)ln\frac{T_2}{295} ln\frac{800}{100}[/tex]

-0.40= 1.005(ln T_2 - 5.68697)- 0.5968

Solving for T2 we have:

T_2 = 5.8828

Taking the exponential on the equation (both sides), we have:

[/tex] T_2 = e^5^.^8^8^2^8 = 358.8K[/tex]

b) Work input to compressor:

w_in = c_p(T_2 - T_1)+q_out

w_in = 1.005(358.8 - 295)+120

= 184.1 kJ/kg

c) Entropy genered during this process, we use the expression;

Egen = ∆Eair + ∆Es

Where; Egen = generated entropy

∆Eair = Entropy change of air in compressor

∆Es = Entropy change in surrounding.

We need to first find ∆Es, since it is unknown.

Therefore ∆Es = \frac{q_out}{T_1}

\frac{120kJ/kg.k}{295K}

∆Es = 0.4068kJ/kg.k

Hence, entropy generated, Egen will be calculated as:

= -0.40 kJ/kg.K + 0.40608kJ/kg.K

= 0.0068kJ/kg.k

3 0
3 years ago
1. True/False The Pressure Relief valve maintains the minimum pressure in the hydraulic circuit​
elena55 [62]
Yeah it’s true. Good luck!!
3 0
3 years ago
A 800-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 40 percent. Determine the rate of hea
Arturiano [62]

Answer:

Rate of heat transfer to river=1200MW

So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes

Explanation:

In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:

Efficiency=\frac{work}{heat transfer to power plant}

Heat transfer=\frac{work}{Efficiency\\} \\\\Heat transfer=\frac{800}{0.40}\\\\Heat transfer=2000MW

From First law of thermodynamics:

Rate of heat transfer to river=heat transfer to power plant-work done

Rate of heat transfer to river=2000-800

Rate of heat transfer to river=1200MW

So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.

4 0
3 years ago
What are the disadvantages of having a liquid cooled engine?
Feliz [49]
One notable disadvantage of liquid cooling over air cooling is that it is considerably costly to set up. Cooling fans are prevalent in the market, and this overabundance of supply means they are cheap. The components of a liquid cooling system can be expensive.
5 0
2 years ago
Other questions:
  • A power company desires to use groundwater from a hot spring to power a heat engine. If the groundwater is at 95 deg C and the a
    7·1 answer
  • A brittle intermetallics specimen is tested with a bending test. The specimen's width 0.45 in and thickness 0.20 in. The length
    5·1 answer
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • The<br> _______includes classes of laborers, such as general laborer, apprentice laborer and mason.
    9·1 answer
  • thier only motto and goal is to work for society and not make any profits A.small business entreprenuership B.scalable start up
    6·2 answers
  • Convert 103.69 kN to TN.
    14·1 answer
  • In a movie theater in winter, 510 people, each generation sensible heat at a rate of 80 W, are watching a movie. The heat losses
    11·1 answer
  • By using a book of the OHS Act, Act 85 of 1993, find the act or regulation where the following extraction comes from "every empl
    12·1 answer
  • Which step in the engineering design process likely broke down in the following scenario?
    14·1 answer
  • In the situation shown below, what would the Moon look like from Earth? Sun, Earth and Moon Four Moon Views A. View A B. View B
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!