Answer:
Y = 176.4 m
Explanation:
For the height of cliff we will analyze the vertical motion. We will apply the 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = ?
V₀y = Initial Vertical Velocity = 0 m/s (since, ball is thrown horizontally)
t = time = 6 s
g = 9.8 m/s²
Therefore,
Y = (0 m/s)(6 s) + (0.5)(9.8 m/s²)(6 s)²
<u>Y = 176.4 m</u>
C. combustion I think. hope this helps
Answer: option A) initially increases, then decreases.
Justification:
The increase of the rate of effective collisions among particles as the temperature increases is explained by the collision theory in virtue of the increase of the kinetic energy.
This is, as the temperature increase so the kinetic energy increase and the higher the kinetic energy the greater the number of collisions and the greater the chances that this energy overcome the activation energy (the energy needed to start the reaction).
Now, as the reaction progress the number of reactants particles naturally decrease (some of them have been converted into product) so this lower number of particles means lower concentration which means lower collisions and, thereafter, a decrease in the reaction rate.
Explanation:
hope it helps.
<h3>stay safe healthy and happy.</h3>
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10