Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
Answer:
The atomic structure of an atom involves 3 subatomic particles: the proton, neutron, and electron. The proton has a positive charge and is found in the core of the atom, with the neutral neutrons that also have a mass of 1 amu (atomic mass unit) just like the proton. The nucleus is the core of the atom and contains protons and neutrons and is practically the only area with mass. The electron cloud is basically an area surrounding the nucleus and it contains negative charged electrons. Electrons have no mass but are charged with a negative charge that keeps them. I really hope this helps :)
Explanation:
There is a helpful video that actually explains the structure of an atom in a rather fun way in just 2 minutes. It really does help big time and it's kinda funny if you look it up on YT and watch:
WKRP: Venus Explains the Atom
Have a wonderful great day :)
Answer:
The molality of isoborneol in camphor is 0.53 mol/kg.
Explanation:
Melting point of pure camphor= T =179°C
Melting point of sample =
= 165°C
Depression in freezing point = 

Depression in freezing point is also given by formula:

= The freezing point depression constant
m = molality of the sample
i = van't Hoff factor
We have:
= 40°C kg/mol
i = 1 ( organic compounds)



The molality of isoborneol in camphor is 0.53 mol/kg.