1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
14

When NASA was communicating with astronauts on the Moon, the time from sending on the Earth to receiving on the moon was 1.33 s.

Find the distance from Earth to the Moon. (The speed of radio waves is 3.00 ´ 108 m/s.)
Physics
1 answer:
frez [133]3 years ago
5 0

To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

v = \frac{x}{t}\rightarrow x = v*t

Where,

x = Displacement

v = Velocity

t = Time

Our values are given as,

v=3*10^8m/s

t = 1.33 s

Replacing we have that,

x=v*t

x=(3*10^8)(1.33)

x = 399'000.000m

Therefore the distance from Earth to the Moon is 399.000 km

You might be interested in
considere que o calor específico de um material presente nas cinzas seja c=0,8j/gc. Supondo que esse material entre na turbina a
drek231 [11]

Answer:

3120J

Explanation:

Given parameters:

C  = Specific heat capacity  = 0.8J/g°C

Initial temperature  = 20°C

Mass given   = 5g

Final temperature  = 800°C

Unknown:

Energy given to the mass  = ?

Solution:

To find the energy given to the mass, let us simply use the expression below:

          H   =   m   c   ΔT

H is the unknown, the energy supplied

m is the mass of the substance

c is the specific heat capacity

ΔT is the change in temperature

Input the variables;

            H    = 5  x   0.8    x    (800 - 20)  = 3120J

7 0
3 years ago
If you wish to observe features that are around the size of atoms, say 1 .5 x 100 m, with electromagnetic radiation, the radiati
chubhunter [2.5K]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

If you wish to observe features that around the size of atoms, say 1.5×10⁻¹⁰ m, with electromagnetic radiation, the radiation must have a wavelength about the size of the atom itself.

a) If you had a microscope which was capable of doing this, what would the frequency of electromagnetic radiation be, in hertz that you would have to use?

b) What type of electromagnetic radiation would this be?

Given Information:

Wavelength = λ = 1.5×10⁻¹⁰  m

Required Information:

a) Frequency = f = ?

b) Type of electromagnetic radiation = ?

Answer:

a) Frequency = f = 2×10¹⁸ Hz

b) Type of electromagnetic radiation = X-rays

Explanation:

a) The frequency of the electromagnetic radiation is given by

f = c/ λ

Where λ  is the wavelength of the electromagnetic radiation and c is the speed of light and its value is 3×10⁸ m/s

f = 3×10⁸/1.5×10⁻¹⁰

f = 2×10¹⁸ Hz

Therefore, the frequency of the electromagnetic radiation would be 2×10¹⁸ Hz.

b)

The frequency range of X-rays is 3×10¹⁶ Hz to 3×10¹⁹ Hz

The frequency 2×10¹⁸ lies in that range, therefore, the type of electromagnetic radiation is X-rays

5 0
3 years ago
In general, how did the water pressure in the tank change when mass was added to the fluid?
MissTica

Answer:

As the height increases the pressure must increase.

Explanation:

When we add masses to the fluid, the amount of fluid in the tank increases, therefore its height increases and the pressure is described by the expression

           P = ρ g h

where rho is constant for a given fluid and h is the height measured from the surface of the fluid.

As the height increases the pressure must increase.

3 0
2 years ago
An apple with a mass of 0.95 kilograms hangs from a tree branch 3.0 meters above the ground. If it falls to the ground, what is
lubasha [3.4K]
Ke = pe
pe = mgh
= 0.95 x 9.8 x 3
= 27.93 J
6 0
3 years ago
Read 2 more answers
Give one example of a thermodynamic cycle that does not account for the carnot efficiency.
Arturiano [62]

Thermo-Electrochemical converter (UTEC) is a thermodynamic cycle that does not account for the Carnot Efficiency.

The Carnot cycle is a hypothetical cycle that takes no account of entropy generation. It is assumed that the heat source and heat sink have perfect heat transfer. The working fluid also remains in the same phase, as opposed to the Rankine cycle, in which the fluid changes phase. A practical thermodynamic cycle, such as the Rankine cycle, would achieve at most 50% of the Carnot cycle efficiency under similar heat source and heat sink temperatures.

<h3>What is Thermo-Electrochemical converter?</h3>

In a two-cell structure, a thermo-electrochemical converter converts potential energy difference during hydrogen oxidation and reduction to heat energy.

It employs the Ericsson cycle, which is less efficient than the Carnot cycle. In a closed system, it converts heat to electrical energy. There are no external input or output devices.

This means there will be no mechanical work to be done, as well as no exhaust. As a result, Carnot efficiency is not taken into account in this cycle. Carnot efficiency is accounted for by other options such as turbine and engine.

Learn more about Thermo-Electrochemical converter here:

brainly.com/question/13040188

#SPJ4

4 0
1 year ago
Other questions:
  • A 40.1 g object is attached to a horizontal spring with a spring constant of 11.9 N/m and released from rest with an amplitude o
    13·1 answer
  • Why do some iron objects such as ships float when placed in water while other iron objects such as nails sink? 1. iron ships hav
    7·2 answers
  • Sound will travel slowest through which medium?
    14·2 answers
  • Suppose the angle of reflection measures 40 degrees. What is the angle of incidence?
    13·2 answers
  • You and a friend both leave the same restaurant to drive home. You are heading directly west at 30 miles per hour and he or she
    8·2 answers
  • I need help solving my homework problem , can somebody help me please . This class is physics two . My question is “ where the p
    10·1 answer
  • 3. Write any two types of force.​
    8·1 answer
  • How much work done if an object is moving to the right and a force of 75. 0n is applied at 125 degrees to the motion while the o
    13·1 answer
  • Determine whether each object has potential energy, kinetic energy, or both
    8·1 answer
  • Which option best describes the average acceleration from 40 to 70 s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!