2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
I think the correct answer from the choices listed above is option C. The can <span>from the cupboard will lose carbon dioxide more quickly because it is warmer and gases are less soluble in warmer temperatures. </span> Solubility of gases is a strong function of temperature and as well as pressure.
Explanation:
elctronic configuration of manganese
Mn=1s²2s²2p⁶3s²3p⁶4s²3d⁵
ground state
Mn=Ar3d⁵4s²
note that Ar is argon