Answer:
Yes
Explanation:
AsH3 contains a polar bond.
I think the correct answer among the choices listed above is option B. Silicon oxide is the solid that contains two types of bonds because you have Si-Si bonds and Si-O bonds. That is two different covalent bonds. Hope this answers your question.
1.08 atm is the pressure for a certain tire in atmosphere.
<u>Explanation:</u>
One kilo pascal (1 kPa) corresponds to 1000 pascal. Another common unit used for pressure is atmosphere (symbolised as ‘atm’). 1 atm refers the standard atmospheric pressures and corresponds to 760 mm Hg and 101.3 kPa. Atmospheric pressures are commonly referred as square inches (psi)/ pounds.

Given:
The air pressure for a certain tire = 109 kPa
We need to find pressure in atmospheres
So, we know,
1 atm = 101.3 kPa
Hence,

1.08 atm is the pressure for a certain tire in atmosphere.
Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)
Answer:
6.5x10⁻³M = [OH⁻]
Explanation:
The Kb of a Weak base as ethylamine is expressed as follows:
Kb = [OH⁻] [C₂H₅NH₃⁺] / [C₂H₅NH₂]
As the equilibrium of ethylenamine is:
C₂H₅NH₂(aq) + H₂O(l) ⇄ C₂H₅NH₃⁺(aq) + OH(aq)
The concentration of C₂H₅NH₃⁺(aq) + OH(aq) is the same because both ions comes from the same equilibrium. Thus, we can write:
Kb = [OH⁻] [C₂H₅NH₃⁺] / [C₂H₅NH₂]
6.4x10⁻⁴ = [X] [X] / [C₂H₅NH₂]
Also, we can assume the concentration of ethylamine doesn't decrease. Replacing:
6.4x10⁻⁴ = [X] [X] / [0.066M]
4.224x10⁻⁵ = X²
6.5x10⁻³M = X
<h3>6.5x10⁻³M = [OH⁻]</h3>