We have that energy=specific heat * change in temperature * mass. Thus, we have the final temperature (22) minus the initial temperature (55) to equal -33 as our change in temperature. Our specific heat is in J/g*C, so we're good with that because g stands for grams and the aluminium is measured in grams. As there are 10 grams of aluminum, we have

as our final temperature
An exothermic reaction would release energy and would therefore lose heat itself, while an endothermic reaction would absorb energy and gain heat. Therefore, losing heat would be an exothermic reaction
Feel free to ask further questions!
Answer:
D H2PO4– + HPO42–
Explanation:
The acid dissociation constant for
are
respectively.



The reason while option D is the best answer is that, the value of pKa for both
lies on either side of the desired pH of the buffer. This implies that one is slightly over and the other is slightly under.
Using Henderson-Hasselbach equation:


☃️ Chemical formulae ➝ 
How to find?
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

Solution:
❍ Molecular weight of 
= 2 × 126.90
= 253.80
= 254 (approx.)
❍ Given weight: 12.7
Then, no. of moles,
⇛ No. of moles = 12.7 / 254
⇛ No. of moles = 0.05 moles
⚘ No. of moles of Iodine molecule in the given weight = <u>0.05</u><u> </u><u>moles </u>
<u>━━━━━━━━━━━━━━━━━━━━</u>