- E(Bonds broken) = 1371 kJ/mol reaction
- E(Bonds formed) = 1852 kJ/mol reaction
- ΔH = -481 kJ/mol.
- The reaction is exothermic.
<h3>Explanation</h3>
2 H-H + O=O → 2 H-O-H
There are two moles of H-H bonds and one mole of O=O bonds in one mole of reactants. All of them will break in the reaction. That will absorb
- E(Bonds broken) = 2 × 436 + 499 = 1371 kJ/mol reaction.
- ΔH(Breaking bonds) = +1371 kJ/mol
Each mole of the reaction will form two moles of water molecules. Each mole of H₂O molecules have two moles O-H bonds. Two moles of the molecule will have four moles of O-H bonds. Forming all those bond will release
- E(Bonds formed) = 2 × 2 × 463 = 1852 kJ/mol reaction.
- ΔH(Forming bonds) = - 1852 kJ/mol
Heat of the reaction:
is negative. As a result, the reaction is exothermic.
Answer:
Substance at the beginning of a reaction- reactant
Substance at the end of a reaction- product
Number placed before a compound in a chemical equation- stoichiometric coefficient
Explanation:
In a reaction equation, the species written on the left hand side of the equation are called the reactants.
The reactants combine to form the species on the right hand side of the reaction equation called products.
The stoichiometric coefficient is a number written before the formula of a compound in the reaction equation.
1000 mL=1L
25 mL = 0.025 L
125 mL = 0.125 L
M1V1=M2V2
0.15(0.125) = M2(0.025)
0.01875 = M2(0.025)
0.75 = M2
0.75 M