Initially, the spring stretches by 3 cm under a force of 15 N. From these data, we can find the value of the spring constant, given by Hook's law:

where F is the force applied, and

is the stretch of the spring with respect to its equilibrium position. Using the data, we find

Now a force of 30 N is applied to the same spring, with constant k=5.0 N/cm. Using again Hook's law, we can find the new stretch of the spring:
Speed has the dimensions of distance divided by time. The SI unit of speed is themetre<span> per second, but the most common unit of speed in everyday usage is the kilometre per </span>hour<span> or, in the US and the UK, miles per </span>hour<span>. For air and marine travel the knot is commonly used.</span>
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom.</span>
Answer:
the ans is D... good luck
Answer:
The tension in the strap is 74.82 N.
Explanation:
Given that,
Angle between the horizontal and the suitcase is 36 degrees.
The distance traveled by the suitcase is 15 meters.
Let the work done by the suitcase is 908 J. We know that the work done in the vector form is given by :

So, the tension in the strap is 74.82 N. Hence, this is the required solution.