Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
Unit Cell is the basic <span>repeating structural unit of a crystalline solid .</span>
A risk-benefit analysis compares the risks and benefits of a situation and determines whether the advantages outweigh the disadvantages.
<h3>What is Risk-benefit analysis in technology?</h3>
Strengths
Risk-benefit analysis calculates the amount of time will be worth it to the production of technology and whether the technology will have a healthy impact on the industry or not.
Weaknesses
Risk-benefit analysis cannon determine product implementation and the outcomes of real life experiences of individual customers. It has some drawbacks like benefits of customer is take under consideration but pollution in nature is not calculated.
Implication
Risk-benefit analysis is implied in almost all technical industry as it the decision maker of any developing team to work on a particular project or not. Some examples are automobile industry and smartphone industry.
Learn more about risk-benefit analysis
brainly.com/question/28590994
#SPJ9
Also water H2O is made of H+ and OH- ions. so when an acidic substance is added to water the concentration of H+ ions increase.