Answer:
339kJ
Explanation:
Given parameters:
Mass of steam = 150g = 0.15kg
Initial temperature of steam = 100°C
Final temperature of water = 100°C
Unknown:
Quantity of heat that must be removed to condense the steam = ?
Solution:
The heat involved here is a latent heat because there is no change temperature. The process is just a phase change.
H = mL
m is the mass
L is the latent heat of vaporization = 2,260 kJ/kg
Insert the parameters and solve;
H = 0.15kg x 2,260 kJ/kg
H = 339kJ
The subscriot 2 means that in the formula there are two parts of K, and the subscript 1 (implicit) for S, indicates that there is one part of S.
This is, the formula gives the ratio of the elements K and S in the compound, which is:
2 atoms of K : 1 atom of S.
Answer: there are 2 atoms of K and 1 atom of S in a molecule of K2S.
Answer:
The yearly release of
into the atmosphere is
.
Explanation:

Annual production of CaO = 
Moles of CaO :

According to reaction, 1 mole of CaO is produced along with 1 mole of carbon-dioxide.
Then along with
of CaO moles of carbon-dioxide moles produced will be:
of carbon-dioxide
Mass of
moles of carbon-dioxide:

The yearly release of
into the atmosphere is
.
Answer:
140. J/g*K
Explanation:
To find the specific heat capacity, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/mole*K)
-----> ΔT = change in temperature (K)
Before you can use the equation above, you need to (1) convert kg to grams, then (2) convert grams to moles (via molar mass), and then (3) convert Celsius to Kelvin. The final answer should have 3 significant figures.
1.11 kg C₄H₈O₂ x 1,000 = 1110 g
Molar Mass (C₄H₈O₂): 4(12.01 g/mol) + 8(1.008 g/mol) + 2(16.00 g/mol)
Molar Mass (C₄H₈O₂): 88.104 g/mol
1110 grams C₄H₈O₂ 1 mole
------------------------------ x ------------------------- = 12.6 moles C₄H₈O₂
88.104 grams
34.5 °C + 273 = 307.5 K
52.3 °C + 273 = 325.3 K
Q = mcΔT <----- Equation
3.14 x 10⁴ J = (12.6 moles)c(325.3 K - 307.5 K) <----- Insert values
3.14 x 10⁴ J = (12.6 moles)c(17.8) <----- Subtract
3.14 x 10⁴ J = (224.28)c <----- Multiply 12.6 and 17.8
140. = c <----- Divide both sides by 224.28
**this answer may be slightly off due to using different molar masses/Kelvin conversions**