They are positive and remain inside the nucleus.
Explanation:
well there is nothing there and it could be different by diffrent objects, idk
Ok, so you've got to figure out a force F and you have the speed in which the boxer punches on determinate time and the mass of the sheet of paper.
So based on the formula that says that the Force is equal to the mass multiplied by the acceleration => F=ma.
You look at it and see that you only have mass which is measured on KG so there is no problem.
then you have the acceleration which is measured on meters and is defined by: a = Δv/Δt
So now you can replace the velocity and the time you have there
⇒ a 25m/s / 0.05s
you have computing that ⇒ 50m because the seconds were cancelled out.
and then you plug the meters into the force equation.
F=(0.005kg)(50)
F=0.25N
so the boxer will have a force of 0.25 Newton's.
The correct graph is <u>D</u>.
The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.
The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.
The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.
The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.