Answer:
V₂ = 1070 mL or 1.07 L
Solution:
Data Given;
P₁ = 1170 mmHg
V₁ = 915 mL
T₁ = 24 °C + 273 K = 297 K
P₂ = 842 mmHg
V₂ = ?
T₂ = - 23 °C + 273 K = 250 K
According to Ideal gas equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / P₂ T₁
Putting Values,
V₂ = (1170 mmHg × 915 mL × 250 K) ÷ (842 mmHg × 297 K)
V₂ = 1070 mL or 1.07 L
You cant its not really that possible there diffrent elements to gather them into one source would be difficult more than likely a scientific explanation would answer this based upon test and research
The question is incomplete, complete question is:
Study this chemical reaction:

Then, write balanced half-reactions describing the oxidation and reduction that happen in this reaction.
Oxidation:
Reduction:
Answer:
Oxidation taking place in given reaction :

Reduction taking place in given reaction;
Explanation:
Redox reaction is defined as the reaction in which oxidation and reduction reaction occur side by side.
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.
Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.


In the given reaction, iron(II) ions are getting reduced and zinc metal is getting oxidized to zinc(II) ions.
Oxidation :

Reduction ;
If your findings disproves your hypothesis then your hypothesis is probably wrong.
Answer:
4KNO3 ==> 2K2O + 2N2 + 5O2
Explanation:
It's a decomposition, but not a simple one.
KNO3 ==> K2O + N2 + O2 I don't usually do this, but I think the easiest way to proceed is to balancing the K and N together. That will require a 2 in front of KNO3
4KNO3 ==> 2K2O + 2N2 + 5O2
Now you have (3*4) = 12 oxygens. Two are on the K2O. So the other 10 must be on the O2
That should do it.