Answer:
Commonly available heat-storage materials cannot usually store the energy for a prolonged period. If a solid material could conserve the accumulated thermal energy, then its heat-storage application potential is considerably widened. Here we report a phase transition material that can conserve the latent heat energy in a wide temperature range, T<530 K and release the heat energy on the application of pressure. This material is stripe-type lambda-trititanium pentoxide, λ-Ti3O5, which exhibits a solid–solid phase transition to beta-trititanium pentoxide, β-Ti3O5. The pressure for conversion is extremely small, only 600 bar (60 MPa) at ambient temperature, and the accumulated heat energy is surprisingly large (230 kJ L−1). Conversely, the pressure-produced beta-trititanium pentoxide transforms to lambda-trititanium pentoxide by heat, light or electric current. That is, the present system exhibits pressure-and-heat, pressure-and-light and pressure-and-current reversible phase transitions. The material may be useful for heat storage, as well as in sensor and switching memory device applications.
Explanation:
Answer:
An electron is a negatively charged subatomic particle and a proton is a positively charged subatomic particle. Positive charge(s) attract negative charge(s) and vice versa. The proton and neutron stay together and attract one another to give the atom an overall charge of zero (neutral). Which is the charge of an atom. When there is an unequal number of protons and neutrons an ion is formed. If the number of protons are more than the electron, a positively charged ion called cation is formed. On the other hand, if the number of electrons are more than the protons a negatively charged ion called anion is formed.
Remember, 1 mole= 6.022x10^23 atoms, molecules, or formula units.
Answer is 1.42x10^24
Answer is A bc you can get electrocuted