Hey there!
Seems like you're looking for the size and direction to the final velocity of the two cars. To find it, you must solve it like this.
0.4 kg(3 m/s) + 0.8kg(–2 m/s) = 1.2 kg m/s -1.6 kg m/s = –0.4 kg m/s
–0.4 kg m/s = 1.2 kg(v) = (–0.4 kg m/s)/(1.2 kg) = v = –0.33 m/s
So, the cars are traveling at -0.33 m/s in the direction of the second car.
Hope this helps
<em>Tobey</em>
Answer:
1.28
Explanation:
If you want to find the m/s you would divide distance by time, so
45 divided by 35 would equal 1.28571429 and so on.
you can just write the three first numbers.
Average speed =
(distance covered during some period of time)
divided by
(length of time to cover that distance).
Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:

T1 = 525 K
T2 = 275 K
We know that


n and v remain same at both side. so we have

..............1
let final pressure is P and temp 

..................2
similarly
.............3
divide 2 equation by 3rd equation
![\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B11%7D%5E%7B-2%2F3%7D%20%5Cfrac%7B21%7D%7B11%7D%5E%7B5%2F3%7D%20%3D%20%5B%5Cfrac%7BT_1%20%7Bf%7D%7D%7BT_2%20%7Bf%7D%7D%5D%5E%7B5%2F3%7D)

thus, temperature on left side is 1.48 times the temperature on right
It runs on Hydrogen gas.
Actually, using hydrogen as a fuel is not new. We used to use it on air vehicle like air balloon. But back then, we still cannot figure out how to safely use this because Hydrogen exlodes rather easily