1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
3 years ago
11

a) A reaction container holds 5.33 g of P4 and 3.77 g of O2 and reaction A occurs. If enough oxygen is available then the P4O6 r

eacts further to undergo reaction B. What is the limiting reactant for the formation of P4O6? b) What mass of P4O6 is produced (theoretical yield in grams)? c) If 7.12g of P4O6 were obtained what is the percent yield? d) Will reaction B occur? Why or why not? What mass of excess reactant is left in the reaction container?
Chemistry
1 answer:
Aliun [14]3 years ago
4 0

The given question is incomplete, the complete question is:

Balance the following chemical equations: A) P4+ O2 → P406 B) _P406+ LO2 → P4010 a) A reaction container holds 5.33 g of P4 and 3.77 g of O2 and reaction A occurs. If enough oxygen is available then the P406 reacts further to undergo reaction B. What is the limiting reactant for the formation of P406? b) What mass of P406 is produced (theoretical yield in grams)? c) If 7.12g of P406 were obtained what is the percent yield? d) Will reaction B occur? Why or why not? What mass of excess reactant is left in the reaction container?

Answer:

The balanced reaction will be,

A) P₄ + 3O₂ ⇒ P₄O₆

B) P₄O₆ + 2O₂ ⇒ P₄O₆

a) Based on the given information, the reaction container holds 5.33 grams of P₄ and 3.77 grams of oxygen. Thus, the moles of P₄ will be,

Moles = mass of P₄/Molar mass of P₄ = 5.33 grams/124 g/mole = 0.043 mole

Now the moles of O₂ will be,

Moles = mass of O₂/Molar mass of O₂ = 3.77 grams/32 g/mol = 0.112 mole

Now the moles of P₄O₆ formed when 0.043 moles of P₄ react completely will be = 1/1 × 0.043 = 0.043 mole of P₄O₆

Similarly, the moles of P₄O₆ formed, when 0.112 moles of O₂ react completely will be = 1/3 × 0.112 = 0.0373 mole of P₄O₆

Thus, from the analysis, the maximum moles of P₄O₆ formed will be 0.0373 moles. Therefore, oxygen will be the limiting reagent, which will react completely in the reaction.

b) From the above findings, the maximum moles of P₄O₆ produced is 0.0373 mole. Thus, the theoretical yield of P₄O₆ produced will be,

= Moles of P₄O₆ × Molar mass of P₄O₆

Theoretical yield = 0.0373 mole × 220 g/mole = 8.206 grams

c) Based on the given information, the actual mass of P₄O₆ produced is 7.12 grams.

Hence, percent yield = Actual yield/Theoretical yield * 100

= 7.12/8.206 × 100 = 86.77 %

d) In the given case, reaction B will not take place. This is due to the fact that oxygen is not left for reaction B, which was the limiting regent for reaction A. Here P₄ is the excess reactant, which was left in the reaction.

The initial moles of P₄ is 0.043, O₂ is 0.112, and P₄O₆ is O. The final moles of P₄ is 0.043 -1/3 × 0.112 = 0.0057 mole, O₂ is 0, and P₄O₆ is 0.0373 mole.

Thus, moles of P₄ left is 0.0057 mole. Hence, the mass of P₄ left will be,

= 0.0057 mole × Molar mass of P₄

= 0.0057 mole × 124 g/mole = 0.7068 grams.

You might be interested in
Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The actua
GrogVix [38]

The value of ∆H when 0.250kg of iron rusts is -1.846 × 10³kJ.

The rust forms when 4.85X10³ kJ of heat is released is 888.916 g.

<h3>Chemical reaction:</h3>

4 Fe + 3O2 ------ 2Fe2O3

∆H = -1.65×10³kJ

A) Given,

mass of iron = 0.250kg = 250 g

<h3>Calculation of number of moles</h3>

moles = given mass/ molar mass

= 250/ 55.85 g/mol.

= 4.476 mol

As we know that,

For the rusting of 4 moles of Fe, ∆H = -1.65×10³kJ

For the rusting of 4.476 moles of Fe ∆H required can be calculated as

-1.65×10³kJ × 4.476 mol/ 4mol

∆H required = -1.846 × 10³kJ

Now,

when 2 mol of Fe2O3 formed, ∆H = - 1.65×10³kJ

It can be said that,

-1.65×10³kJ energy released when 2 mol of Fe2O3 formed

So, -4.6 × 10³kJ energy released when 2 mol of Fe2O3 formed

= 2 × -4.6 × 10³kJ / -1.65×10³kJ

= 5.57 mol of Fe2O3 formed

Now,

mass of Fe2O3 formed = 5.57 mol × 159.59 g/mol

= 888.916 g

Thus, we calculated that the rust forms when 4.85X10³ kJ of heat is released is 888.916 g. and the value of ∆H when 0.250kg of iron rusts is -1.846 × 10³kJ.

learn more about ∆H:

brainly.com/question/24170335

#SPJ4

DISCLAIMER:

The given question is incomplete. Below is the complete question

QUESTION:

Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The actual process requires water, but a simplified equation is 4Fe(s) + 3O₂(g) → 2Fe₂O₃(s) ΔH = -1.65×10³kJ

a) What is the ∆H when 0.250kg iron rusts.

(b) How much rust forms when 4.85X10³ kJ of heat is released?

7 0
2 years ago
The process by which nitrogen gas is converted to a usable form is called nitrogen
LenaWriter [7]

Answer: i beleive it is fixation in edge 2020

Explanation:

4 0
3 years ago
Read 2 more answers
What compound is formed when methyloxirane (1,2-epoxypropane) is reacted with ethylmagnesium bromide followed by treatment with
Pavlova-9 [17]

Answer:

Pentan-2-ol

Explanation:

On this reaction, we have a <u>Grignard reagent</u> (ethylmagnesium bromide), therefore we will have the production of a <u>carbanion</u> (step 1). Then this carbanion can <u>attack the least substituted carbon</u> in the epoxide in this case carbon 1 (step 2). In this step, the epoxide is open and a negative charge is generated in the oxygen. The next step, is the <u>treatment with aqueous acid</u>, when we add acid the <u>hydronium ion</u> (H^+)  would be produced, so in the reaction mechanism, we can put the hydronium ion. This ion would be <u>attacked by the negative charge</u> produced in the second step to produce the final molecule: <u>"Pentan-2-ol".</u>

See figure 1

I hope it helps!

5 0
3 years ago
6. if a cross country runner travels at a speed of 10 mph and he runs for 2 hours, how many miles will he have run at the end of
storchak [24]

Explanation:

distance = speed x time

distance = 10 x 2

distance = 20miles

hope that helps :)

5 0
2 years ago
The general rule of thumb is that the (smaller or larger) a substance's atoms and the (stronger or weaker) the bonds, the harder
Luda [366]
Answer is: <span>The general rule of thumb is that the smaller a substance's atoms and the stronger the bonds, the harder the substance will be. 
If the distance between atoms is higher, lesser will be attraction between electrons and protons of atoms, smaller distance means stronger atoms attraction.

</span>
8 0
3 years ago
Other questions:
  • An electron has a velocity of 6.0  106 m/s in the positive x-direction at a point where the magnetic field has the components B
    8·1 answer
  • Phenolphthalein has a pka of 9.7 and is colorless in its acid form and pink in its basic form. part a for ph= 2.0 calculate [in−
    12·2 answers
  • What is the order of planets and dwarf planets by distance from the Sun?
    10·2 answers
  • Process of genetic engineering
    12·1 answer
  • A gas effuses 4.0 times faster than oxygen (O2). What is the molecular mass of the gas?
    14·1 answer
  • Which of these solutions has the highest freezing point?
    6·2 answers
  • Which is a dominant trait that Mendel observed in pea plants?
    9·2 answers
  • Look at the potential energy diagram below. What amount of energy does the products have ?
    7·2 answers
  • So, a gas, and an
    8·1 answer
  • Place the items in order from lowest to highest degree of internal organization
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!