Answer:
the energy when it reaches the ground is equal to the energy when the spring is compressed.
Explanation:
For this comparison let's use the conservation of energy theorem.
Starting point. Compressed spring
Em₀ = K_e = ½ k x²
Final point. When the box hits the ground
Em_f = K = ½ m v²
since friction is zero, energy is conserved
Em₀ = Em_f
1 / 2k x² = ½ m v²
v =
x
Therefore, the energy when it reaches the ground is equal to the energy when the spring is compressed.
The statement which is true of a wave that’s propagating along the pavement and girders of a suspension bridge is A. The wave is mechanical, with particles vibrating in a direction that is parallel to that of the wave, forming compressions and rarefactions.
Answer:
- A vibrating object
- a medium to travel
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
Answer:
115, 80, 15m
Explanation
t1 = 14s
t2 = 18s
change in time = 4s (18-14)
r(final) = r(initial) + (average velocity) x (change in time)
multiply the average velocity with the change in time
= (4, 0, -3) x 4 = 16, 0, -12
now we'll add this value to the initial position of the car
(99, 80, 27)m + (16, 0, -12)m = (115, 80, 15)m