Hydraulic pressure is actually the pressure that is exerted to liquid and the pressure gets transmitted throughout the liquid. Since liquid cannot be compressed, so the pressure that was exerted on the liquid gets transmitted to the walls of the container containing the liquid. This theory is applied to the braking system of cars and some other vehicles. This is known as the hydraulic pressure. It is actually the science that is concerned with the laws of movements of a fluid and the application of this theory for engineering purpose. This theory has not only been used in cars but also in planes .
Answer:
Do not move stay in your car and wait for someone from the power company to come and help
Explanation:
Plz vote my answer as the brainiest, i rlly need it! hope this helps!
<h3>Answer: any path that allows electrons to flow</h3>
An electrical circuit is a path in which electrons from a voltage or current source flow. ... The part of an electrical circuit that is between the electrons' starting point and the point where they return to the source is called an electrical circuit's "load".
To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.
Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.
To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.
To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.
Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.
Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.
The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192
We can further simplify this ratio:
96:192
48:96
24:48
12:24
6:12
3:6
1:2
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!