Answer:
the ionic radius of the anion 
Explanation:
From the diagram shown below :
The anion
is located at the corners
The cation
is located at the body center
The Body diagonal length = 
∴ 
Given that :
(i.e the ratio of the ionic radius of the cation to the ionic radius of
the anion )

Also ; a = 664 pm
Then :

Therefore, the ionic radius of the anion 
Fossils are the preserved remains or traces of animals, plants, and other organisms from the past.
Fossils are important evidence for evolution because they show that life on earth was once different from life found on earth today.
Usually only a portion of an organism is preserved as a fossil, such as body fossils (bones and exoskeletons ), trace fossils (feces and footprints), and chemofossils (biochemical signals).
Paleontologists can determine the age of fossils using methods like radiometric dating and categorize them to determine the evolutionary relationships between organisms.
Convert each amount of grams into moles:
I: 23.24g x 1 mol / 126.90g = 0.1831 mol I
C: 2.198 x 1 mol / 12.01g = 0.1830 mol C
N: 2.562 x 1 mol / 14.01g = 0.1829 mol N
Each element has roughly the same amount of moles, which means the whole number ratio between the elements is 1:1:1
Therefore the empirical formula is ICN
Carbon tetrachloride looks like this
Cl
Cl-C-Cl
Cl
Whereas methane looks as so,
H
H-C-H
H
——————————————————————
In structure/geometry, they’re the exact same. They have the same surface area, and neither one is polar.
The only attribute to the difference in boiling points is the total molecular weights of the atoms
CH4 is MUCH lighter than CCl4, making the molecules easier to float around.