1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
3 years ago
9

Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two op

tions for the propulsion system --- chemical and electric --- each with a different specific impulse. Recall that the relationship between specific impulse and exhaust velocity is: Vex=g0Isp Using the Ideal Rocket Equation and setting g0=9.81m/s2 , calculate the propellant fraction required to achieve the necessary ΔV for each of propulsion system. Part 1: Cryogenic Chemical Propulsion First, consider a cryogenic chemical propulsion system with Isp≈450s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%): incorrect Part 2: Electric Propulsion Next, consider an electric propulsion system with Isp≈2000s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%):
Physics
1 answer:
Nostrana [21]3 years ago
8 0

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

Where:

v_{ex} is relationship between exhaust velocity and specific impulse

\frac{m_{f}}{m_{e}} is the porpellant fraction, also written as MR.

The relationship v_{ex} is: v_{ex} = g_{0}.Isp

To determine the fraction:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

ln(MR) = \frac{v}{v_{ex}}

Knowing that change in velocity is Δv = 9.6km/s and g_{0} = 9.81m/s²

<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

<u />

<u>Part 1</u>: Isp = 450s

ln(MR) = \frac{v}{v_{ex}}

ln(MR) = \frac{9.6.10^{3}}{9.81.450}

ln (MR) = 2.17

MR = e^{2.17}

MR = 8.76

<u>Part 2:</u> Isp = 2000s

ln(MR) = \frac{v}{v_{ex}}

ln (MR) = \frac{9.6.10^{3}}{9.81.2.10^{3}}

ln (MR) = 0.49

MR = e^{0.49}

MR = 1.63

You might be interested in
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of t
muminat
<h2><em><u>⇒</u></em>Answer:</h2>

In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)

Step-by-Step Solution:

Solution 35PE

This question discusses about the increased range. So, we shall assume that the angle of jumping will be  as the horizontal range is maximum at this angle.

Step 1 of 3<

/p>

The legs have an extension of 0.600 m in the crouch position.

So,  m

The person is at rest initially, so the initial velocity will be zero.

The acceleration is  m/s2

Acceleration  m/s2

Let the final velocity be .

Step 2 of 3<

/p>

Substitute the above given values in the kinematic equation  ,

m/s

Therefore, the final velocity or jumping speed is  m/s

Explanation:

3 0
3 years ago
Read 2 more answers
a boy runs from his house to school at speed 5m/s on a straight road and returns with speed of 10m/s.The distance between the ho
CaHeK987 [17]

Explanation:

time spent to run from house to school=100/5=20s

time spent to return from school=100/10=10s

average velocity=200m/(10+20)

  • =6.66m/s
3 0
3 years ago
Two forces are applied on a body. One produces a force of 480-N directly forward while the other gives a 513-N force at 32.4-deg
n200080 [17]

Answer:

F = (913.14 , 274.87 )

|F| = 953.61 direction 16.71°

Explanation:

To calculate the resultant force you take into account both x and y component of the implied forces:

\Sigma F_x=480N+513Ncos(32.4\°)=913.14N\\\\\Sigma F_y=513sin(32.4\°)=274.87N

Thus, the net force over the body is:

F=(913.14N)\hat{i}+(274.87N)\hat{j}

Next, you calculate the magnitude of the force:

F=\sqrt{(913.14N)+(274.87N)^2}=953.61N

and the direction is:

\theta=tan^{-1}(\frac{274.14N}{913.14N})=16.71\°

7 0
3 years ago
1 a rectangular block of steel measures 4cm * 2cm* 1.5cm. its mass is 93 .6g
damaskus [11]

Answer:

xjsjsiaiwdjajajqjiwjwjeueie

5 0
3 years ago
Read 2 more answers
What is the farthest distance parallaxes can be used to measure star distances from Earth?
JulsSmile [24]
Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.
8 0
3 years ago
Other questions:
  • An object with charge q=−6.00×10−9C is placed in a region of uniform electric field and is released from rest at point A. After
    5·1 answer
  • A chemical change means a new substance with new properties was<br> formed.<br> True<br> False
    8·1 answer
  • According to Newton's first law of motion, what will an object in motion do when
    12·2 answers
  • What is true of all particles of gas enclosed within a container?
    15·2 answers
  • Is bleach heterogeneous
    6·1 answer
  • What are the constant parameters in Charles' gas law?
    15·1 answer
  • How long does it take me to travel 500 m at a speed of 50 m/s?
    13·2 answers
  • A football is thrown with an acceleration of 15 m/s^2 and a force of 13 N. What is its mass?
    8·2 answers
  • What causes the random, zig-zag movement (Brownian motion) of smoke particles suspended in air?​
    10·1 answer
  • Convert 13.6g/cm3 into kg/m3​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!