The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Because a Btu is so small, energy is usually measured in millions of Btus. 1 Btu = the amount of energy required to increase the temperature of one pound of water (which is equivalent to one pint) by one degree Fahrenheit. This is roughly the heat produced from burning one match.
<em>https://www.ucsusa.org/clean_energy/our-energy-choices/how-is-energy-measured.html</em>
Answer:
80.6 mV
Explanation:
Parameters given:
Number of turns, N = 115
Radius of coil, r = 2.71 cm = 0.0271m
Time taken, t = 0.133s
Initial magnetic field, Bin = 50.1 mT = 0.0501 T
Final magnetic field, Bfin = 90.5 mT = 0.0905 T
Induces EMF is given as:
EMF = [(Bfin - Bin) * N * A] / t
EMF = [(0.0905 - 0.0501) * 115 * pi * 0.0271²] / 0.133
EMF = (0.0404 * 115 * 3.142 * 0.0007344) / 0.133
EMF = 0.0806 V = 80.6 mV
Potential energy due to gravity = Ep = mgh [symbols have their usual meaning ]
Evidently, HALVING the mass will make Ep , HALF its previous value. So, It will be halved.