Answer:
34 m/s
Explanation:
m = Mass of glider with person = 680 kg
v = Velocity of glider with person = 34 m/s
= Mass of glider without person = 680-60 kg
= Gliders speed just after the skydiver lets go
= Mass of person = 60 kg
= Velcotiy of person = 34 m/s
As the linear momentum of the system is conserved

The gliders speed just after the skydiver lets go is 34 m/s
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
Answer:
-414.96 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The force the ground exerts on the parachutist is -414.96 N
If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase
Answer:
The resistance is 
Explanation:
Given that,
Diameter of tube = 8.5 mm
Length = 8 cm
Resistivity = 2.5 m
We need to calculate the resistance
The resistance is equal to the product of the resistivity and length divided by the area of cross section .
In mathematical form,

Where,
=resistivity
l = length
A = area of cross section
Put the value into the formula



Hence, The resistance is 