Answer:
Ahhhhhh ano wala dito ang answer
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Answer:
Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation. ... Convection transfers thermal energy through the movement of fluids or gases in circulation cells.
Explanation:
Total resistance= 7.75+15.5+21.7=44.95
Current = 15V/44.95=0.334A
I believe they are called nonohmic materials. According to ohms law the current trough a current carrying conductor is directly proportional to the potential difference (voltage) at a constant resistance. Non-ohmic conductors or materials are those materials that do not obey the ohms law, their resistance increases as the current increases. Ohmic materials are those that obeys the ohms law such that the voltage and current are proportional- doubling the potential difference doubles the current.