Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
Answer:
this is were you get everything
Explanation:
Answer:
0.02
Explanation:
coefficient of kinetic friction = μ
force of friction = Ff
Normal Force = FN, but
FN = -W
Ff = -μFN
so μ = Ff/FN
= 4N/200N
= 0.02.
what causes a star to shine brightly:
by squeezing atoms together in its core