Answer:

Explanation:
We have the following information,

We apply the equation for capacitor charging the voltage across it,

Replacing values,


Answer:
3. increases with an increase in temperature.
Explanation:
The air more water vapor at higher temperatures because at higher temperatures the air expands and the inter-molecular space increases so the room for water molecules increases.
Warm air keeps the water molecules warm and prevents them from condensing.
The air can hold the moisture only upto its saturation quantity after which the precipitation occurs in the form of rain, snow, hail, sleet etc.
Answer:
dg= 942m
Explanation:
given the depth of the granite Us dg = 500m
time between the explosion t = 0.99s
the speed of sound in granite is Vg = 6000m/s
First of all calculate the time it takes the sound waves to travel down through the lake
Vw = dw/t1
t1 = dw/Vw
t1 = 500/1480
t1 = 0.338s.
Let dg be the depth of the granite basin, so the time it takes for the sound to travel down through the granite is t2 = dg/6000m/s......equation(1)
So the total time it takes to travel down to the oil surface will be
t1/2 = t1 + t2
t1/2= 0.338 + dg/6000.
since the reflection on the oil does not change the speed of sound, the sound will take travelling upto the surface the same time it takes to reach the oil
so; t = 2 t1/2
t1/2 = t/2 = 0.99s/2 = 0.495
Now insert into the values of t1/2 into the equation (1) and solve for dg;
we get 0.495 = 0.338 + dg/6000
dg = (0.495 - 0.338) x 6000
dg = 942m.
Answer:
Yes, this is according to the Newton's first law of motion.
Neither its direction nor its velocity changes during this course of motion.
Explanation:
Yes, it is very well in accordance with Newton's first law of motion for a body with no force acting on it and it travels with a non-zero velocity.
During such a condition the object will have a constant velocity in a certain direction throughout its motion. Neither its direction nor its velocity changes during this course of motion.
<u>D: Half</u>
We know that,
F = m.a, where F is the force, m is the object's mass and a is the acceleration.
In the first case, we observed that a1 = F/m.
In the second case, we observed that the mass has been doubled, so a2 = F/2m .
By the ratio of the two cases, we get
a1/a2 = F/m / F/2m
or, a1/a2 = 2
or, a1 = 2.a2
or, a1/2 = a2
Therefore, the acceleration gets <u>half</u> of it's original measurement.